Evolution Equations From Tidal Torque+Power

The orbital energy and angular momentum are:

\[\begin{split}E&=&-\frac{GMM'}{2a}\\ L&=&\frac{MM'}{M+M'}a^2\Omega\sqrt{1-e^2} =GMM'\sqrt{\frac{(1-e^2)MM'}{(-2E)(M+M')}}\end{split}\]

Hence:

\[\begin{split}\dot{a}&=&a\frac{-\dot{E}}{E}\\ \dot{e}&=&\frac{(M+M')}{G^2(MM')^3}\frac{(\dot{E}L+2E\dot{L})L}{e}\\\end{split}\]

Now consider a single zone subject to tidal torques. We will use the following variables:

  • \(\mathbf{S}\) and \(S\): the spin angular momentum vector of the zone and its absolute value
  • \(\mathbf{L}\) and \(L\): the orbital angular momentum vector and its absolute value
  • \(\theta\): angle between the angular momentum vector of the zone and the angular momentum of the orbit (inclination).
  • \(\omega\): the argument of periapsis of the orbit with a plane of reference perpendicular to \(\mathbf{S}\).
  • \(\mathbf{T}\): the tidal torque vector acting on this zone (and of course with a negative sign on the orbit).
  • \(\mathbf{\tilde{T}}\): the negative of the tidal torques on the orbit due to other zones.
  • \(\mathbf{\mathscr{T}}\): the torque on this zone due to coupling to other zones (e.g. due to differential rotation coupling or mass exchange).
  • \(\mathbf{\hat{p}}\): a unit vector along the periapsis of the orbit
  • \(\mathbf{\hat{z}}\): a unit vector along \(\mathbf{S}\).
  • \(\mathbf{\hat{y}}\): a unit vector along the ascending node of the orbit.
  • \(\mathbf{\hat{x}}\): \(\mathbf{\hat{y}}\times\mathbf{\hat{z}}\).

We will use primed quantities to denote the updated value of a quantity after an infinitesimal times step, and will use x, y and z indices to indicate projections of quantities alonge \(\mathbf{\hat{x}}\), \(\mathbf{\hat{y}}\) and \(\mathbf{\hat{z}}\) respectively.

\[\begin{split}\mathbf{S} &=& S\mathbf{\hat{z}}\\ \mathbf{L} &=& L\sin\theta\mathbf{\hat{x}}+L\cos\theta\mathbf{\hat{z}}\\ \mathbf{\hat{y}} &=& \frac{\mathbf{S}\times\mathbf{L}}{LS\sin\theta}\\ \mathbf{\hat{p}} &=& - \sin\omega\cos\theta\mathbf{\hat{x}} + \cos\omega\mathbf{\hat{y}} + \sin\omega\sin\theta\mathbf{\hat{z}}\\ \mathbf{S}' &=& (T_x+\mathscr{T}_x)dt\mathbf{\hat{x}} + (T_y+\mathscr{T}_y)dt\mathbf{\hat{y}} + (S+T_zdt+\mathscr{T}_zdt)\mathbf{\hat{z}}\\ \mathbf{L}' &=& (L\sin\theta-T_xdt-\tilde{T}_xdt)\mathbf{\hat{x}} - (T_y+\tilde{T}_y)dt\mathbf{\hat{y}} + (L\cos\theta-T_zdt-\tilde{T}_zdt)\mathbf{\hat{z}}\\ \frac{1}{S'} &=& \frac{1}{S} - \frac{T_z+\mathscr{T}_z}{S^2}dt\\ \frac{1}{L'} &=& \frac{1}{L} + \frac{(T_x+\tilde{T}_x)\sin\theta + (T_z+\tilde{T}_z)\cos\theta}{L^2}dt\\ \frac{1}{L'S'} &=& \frac{1}{LS}\left(1 - \frac{T_z+\mathscr{T}_z}{S}dt + \frac{(T_x+\tilde{T}_x)\sin\theta + (T_z+\tilde{T}_z)\cos\theta}{L}dt \right)\\ \Rightarrow \frac{d}{dt}\left(\frac{1}{LS}\right) &=& \frac{1}{LS}\left(\frac{(T_x+\tilde{T}_x)\sin\theta + (T_z+\tilde{T}_z)\cos\theta}{L} - \frac{T_z+\mathscr{T}_z}{S} \right)\end{split}\]

In order to derive the evolution rate for the inclination:

\[\begin{split}\cos\theta &=& \frac{\mathbf{S}\cdot\mathbf{L}}{LS}\\ \cos\theta' &=& \frac{\mathbf{S}'\cdot\mathbf{L}'}{L'S'}\\ &=& \frac{L\sin\theta(T_x+\mathscr{T}_x)dt + LS\cos\theta + L\cos\theta(T_z+\mathscr{T}_z)dt - S(T_z+\tilde{T}_z)dt}{LS} \left(1 - \frac{T_z+\mathscr{T}_z}{S}dt + \frac{(T_x+\tilde{T}_x)\sin\theta + (T_z+\tilde{T}_z)\cos\theta}{L}dt \right)\\ &=& \cos\theta -\frac{\cos\theta(T_z+\mathscr{T}_z)}{S}dt + \frac{(T_x+\tilde{T}_x)\sin\theta\cos\theta + (T_z+\tilde{T}_z)\cos^2\theta}{L}dt +\frac{\sin\theta(T_x+\mathscr{T}_x)}{S}dt + \frac{\cos\theta(T_z+\mathscr{T}_z)}{S}dt - \frac{T_z+\tilde{T}_z}{L}dt\\ &=& \cos\theta + \frac{(T_x+\tilde{T}_x)\sin\theta\cos\theta - (T_z+\tilde{T}_z)\sin^2\theta}{L}dt +\frac{\sin\theta(T_x+\mathscr{T}_x)}{S}dt\\ \Rightarrow \dot{\theta} &=& \frac{(T_z+\tilde{T}_z)\sin\theta}{L} - \frac{(T_x+\tilde{T}_x)\cos\theta}{L} - \frac{T_x+\mathscr{T}_x}{S}\end{split}\]

Now to derive the evolution rate for the argument of periapsis:

\[\dot{\omega} = -\frac{1}{\sin\omega}\frac{d(\mathbf{\hat{p}}\cdot\mathbf{\hat{y}})}{dt} = -\frac{1}{\sin\omega}\left( \mathbf{\hat{y}}\cdot\frac{d\mathbf{\hat{p}}}{dt} + \mathbf{\hat{p}}\cdot\frac{d\mathbf{\hat{y}}}{dt} \right)\]
\[\begin{split}\frac{d}{dt}\left(\mathbf{S}\times\mathbf{L}\right) &=& - S(T_x+\tilde{T}_x)\mathbf{\hat{y}} + S(T_y+\tilde{T}_y)\mathbf{\hat{x}} - L\cos\theta(T_x+\mathscr{T}_x)\mathbf{\hat{y}} + L\cos\theta(T_y+\mathscr{T}_y)\mathbf{\hat{x}} - L\sin\theta(T_y+\mathscr{T}_y)\mathbf{\hat{z}} + L\sin\theta(T_z+\mathscr{T}_z)\mathbf{\hat{y}}\\ &=& \left[S(T_y+\tilde{T}_y) + L\cos\theta(T_y+\mathscr{T}_y)\right]\mathbf{\hat{x}} + \left[L\sin\theta(T_z+\mathscr{T}_z) - L\cos\theta(T_x+\mathscr{T}_x) - S(T_x+\tilde{T}_x) \right]\mathbf{\hat{y}} - L\sin\theta(T_y+\mathscr{T}_y)\mathbf{\hat{z}}\end{split}\]

From \(\dot{\theta}\):

\[\frac{d}{dt}\left(\frac{1}{\sin\theta}\right) = \frac{(T_x+\tilde{T}_x)\cos^2\theta}{L\sin^2\theta} + \frac{(T_x+\mathscr{T}_x)\cos\theta}{S\sin^2\theta} - \frac{(T_z+\tilde{T}_z)\cos\theta}{L\sin\theta}\]

Combining \(\frac{d}{dt}\left(\frac{1}{LS}\right)\), \(\frac{d}{dt}\left(\mathbf{S}\times\mathbf{L}\right)\) and \(\frac{d}{dt}\left(\frac{1}{\sin\theta}\right)\):

\[\begin{split}\frac{d}{dt}\mathbf{\hat{y}} &=& \left\{\frac{(T_x+\tilde{T}_x)\sin\theta + (T_z+\tilde{T}_z)\cos\theta}{L} - \frac{T_z+\mathscr{T}_z}{S} \right\}\mathbf{\hat{y}}\\ && + \frac{1}{LS\sin\theta}\left\{ \left[S(T_y+\tilde{T}_y) + L\cos\theta(T_y+\mathscr{T}_y)\right]\mathbf{\hat{x}} + \left[L\sin\theta(T_z+\mathscr{T}_z) - L\cos\theta(T_x+\mathscr{T}_x) - S(T_x+\tilde{T}_x) \right]\mathbf{\hat{y}} - L\sin\theta(T_y+\mathscr{T}_y)\mathbf{\hat{z}} \right\}\\ && + \left\{\frac{(T_x+\tilde{T}_x)\cos^2\theta}{L\sin\theta} + \frac{(T_x+\mathscr{T}_x)\cos\theta}{S\sin\theta} - \frac{(T_z+\tilde{T}_z)\cos\theta}{L} \right\}\mathbf{\hat{y}}\\ &=& \left[\frac{T_y+\tilde{T}_y}{L\sin\theta} + \frac{\cos\theta(T_y+\mathscr{T}_y)}{S\sin\theta} \right]\mathbf{\hat{x}}\\ && + \left[\frac{(T_x+\tilde{T}_x)\sin\theta}{L} + \frac{(T_z+\tilde{T}_z)\cos\theta}{L} - \frac{T_z+\mathscr{T}_z}{S} - \frac{\cos\theta(T_x+\mathscr{T}_x)}{S\sin\theta} + \frac{T_z+\mathscr{T}_z}{S} - \frac{T_x+\tilde{T}_x}{L\sin\theta} + \frac{(T_x+\tilde{T}_x)\cos^2\theta}{L\sin\theta} + \frac{(T_x+\mathscr{T}_x)\cos\theta}{S\sin\theta} - \frac{(T_z+\tilde{T}_z)\cos\theta}{L} \right]\mathbf{\hat{y}}\\ && - \frac{T_y+\mathscr{T}_y}{S}\mathbf{\hat{z}}\\ &=& \left[ \frac{T_y+\tilde{T}_y}{L\sin\theta} + \frac{(T_y+\mathscr{T}_y)\cos\theta}{S\sin\theta} \right]\mathbf{\hat{x}} - \frac{T_y+\mathscr{T}_y}{S}\mathbf{\hat{z}}\\ \Rightarrow -\frac{\mathbf{\hat{p}}}{\sin\omega}\cdot\frac{d}{dt}\mathbf{\hat{y}} &=& \frac{(T_y+\tilde{T}_y)\cos\theta}{L\sin\theta} + \frac{(T_y+\mathscr{T}_y)\cos^2\theta}{S\sin\theta} + \frac{(T_y+\mathscr{T}_y)\sin\theta}{S}\\ &=& \frac{(T_y+\tilde{T}_y)\cos\theta}{L\sin\theta} + \frac{T_y+\mathscr{T}_y}{S\sin\theta}\end{split}\]

The evolution of the direction of periapsis:

\[\begin{split} \frac{d}{dt}\mathbf{\hat{p}} &=& -(\mathbf{T}+\mathbf{\tilde{T}}) \cdot\mathbf{\hat{p}}\frac{\mathbf{L}}{L^2}\\ &=& \left(\frac{(T_x+\tilde{T}_x)\sin\omega\cos\theta}{L} - \frac{(T_y+\tilde{T}_y)\cos\omega}{L} - \frac{(T_z+\tilde{T}_z)\sin\omega\sin\theta}{L} \right) \left(\sin\theta\mathbf{\hat{x}}+\cos\theta\mathbf{\hat{z}}\right)\\ \Rightarrow - \frac{\mathbf{\hat{y}}}{\sin\omega}\cdot\frac{d}{dt}\mathbf{\hat{p}} &=& 0\end{split}\]

So we get:

\[\dot{\omega} = \frac{(T_y+\tilde{T}_y)\cos\theta}{L\sin\theta} + \frac{T_y+\mathscr{T}_y}{S\sin\theta}\]

Finally:

\[\begin{split}\dot{S} &=& T_z+\mathscr{T}_z\\ \dot{L} &=& -T_x\sin\theta - T_z\cos\theta\end{split}\]

What remanains is to find \(\tilde{T}_x\), \(\tilde{T}_y\) and \(\tilde{T}_z\). All that is necessary is to express the coornidate system unit vectors of all other zones in terms of the ones for this zone. We will use \(\mathbf{\hat{\tilde{x}}}\), \(\mathbf{\hat{\tilde{y}}}\) and \(\mathbf{\hat{\tilde{z}}}\) to refer to the unit vectors of another zone, and we will denote the difference between this zone’s argument of periapsis and the second zone by \(\Delta\omega\).

Clearly:

\[\mathbf{\hat{\tilde{y}}}=-\cos\theta\sin\Delta\omega\mathbf{\hat{x}} + \cos\Delta\omega\mathbf{\hat{y}} + \sin\theta\sin\Delta\omega\mathbf{\hat{z}}\]

Next:

\[\begin{split} \mathbf{\hat{\tilde{z}}} &=& \cos\tilde{\theta}\mathbf{\hat{L}} + \sin\tilde{\theta}\mathbf{\hat{L}}\times\mathbf{\hat{\tilde{y}}}\\ &=& \sin\theta\cos\tilde{\theta}\mathbf{\hat{x}} + \cos\theta\cos\tilde{\theta}\mathbf{\hat{z}} + \sin\tilde{\theta}\left( \sin\theta\cos\Delta\omega\mathbf{\hat{z}} - \sin^2\theta\sin\Delta\omega\mathbf{\hat{y}} - \cos^2\theta\sin\Delta\omega\mathbf{\hat{y}} - \cos\theta\cos\Delta\omega\mathbf{\hat{x}} \right)\\ &=& \left( \sin\theta\cos\tilde{\theta} - \cos\theta\sin\tilde{\theta}\cos\Delta\omega \right)\mathbf{\hat{x}} - \sin\tilde{\theta}\sin\Delta\omega\mathbf{\hat{y}} + \left( \cos\theta\cos\tilde{\theta} + \sin\theta\sin\tilde{\theta}\cos\Delta\omega \right)\mathbf{\hat{z}}\end{split}\]

Finally:

\[\begin{split} \mathbf{\hat{\tilde{x}}} &=& \sin\tilde{\theta}\mathbf{\hat{L}} - \cos\tilde{\theta}\mathbf{\hat{L}}\times\mathbf{\hat{\tilde{y}}}\\ &=& \left( \sin\theta\sin\tilde{\theta} + \cos\theta\cos\tilde{\theta}\cos\Delta\omega \right)\mathbf{\hat{x}} + \cos\tilde{\theta}\sin\Delta\omega\mathbf{\hat{y}} + \left( \cos\theta\sin\tilde{\theta} - \sin\theta\cos\tilde{\theta}\cos\Delta\omega \right)\mathbf{\hat{z}}\end{split}\]

Crosscheck that \(\mathbf{\hat{\tilde{x}}}\times\mathbf{\hat{\tilde{y}}} = \mathbf{\hat{\tilde{z}}}\):

\[\begin{split}\mathbf{\hat{\tilde{x}}}\times\mathbf{\hat{\tilde{y}}} &=& \left(\sin\theta\sin\tilde{\theta} + \cos\theta\cos\tilde{\theta}\cos\Delta\omega \right)\cos\Delta\omega\mathbf{\hat{z}} - \left(\sin\theta\sin\tilde{\theta} + \cos\theta\cos\tilde{\theta}\cos\Delta\omega \right)\sin\theta\sin\Delta\omega\mathbf{\hat{y}}\\ && + \cos\tilde{\theta}\sin\Delta\omega \cos\theta\sin\Delta\omega \mathbf{\hat{z}} + \cos\tilde{\theta}\sin\Delta\omega \sin\theta\sin\Delta\omega \mathbf{\hat{x}}\\ && - \left(\cos\theta\sin\tilde{\theta} - \sin\theta\cos\tilde{\theta}\cos\Delta\omega \right)\cos\theta\sin\Delta\omega\mathbf{\hat{y}} - \left(\cos\theta\sin\tilde{\theta} - \sin\theta\cos\tilde{\theta}\cos\Delta\omega \right)\cos\Delta\omega\mathbf{\hat{x}}\\ &=& \left( \sin\theta\cos\tilde{\theta}\sin^2\Delta\omega - \cos\theta\sin\tilde{\theta}\cos\Delta\omega + \sin\theta\cos\tilde{\theta}\cos^2\Delta\omega \right)\mathbf{\hat{x}} -\left( \sin^2\theta\sin\tilde{\theta}\sin\Delta\omega + \sin\theta\cos\theta\cos\tilde{\theta} \sin\Delta\omega\cos\Delta\omega + \cos^2\theta\sin\tilde{\theta}\sin\Delta\omega - \sin\theta\cos\theta\cos\tilde{\theta} \sin\Delta\omega\cos\Delta\omega \right)\mathbf{\hat{y}} +\left( \sin\theta\sin\tilde{\theta}\cos\Delta\omega + \cos\theta\cos\tilde{\theta}\cos^2\Delta\omega + \cos\theta\cos\tilde{\theta}\sin^2\Delta\omega \right)\mathbf{\hat{z}}\\ &=& \left( \sin\theta\cos\tilde{\theta} - \cos\theta\sin\tilde{\theta}\cos\Delta\omega \right)\mathbf{\hat{x}} - \sin\tilde{\theta}\sin\Delta\omega\mathbf{\hat{y}} + \left( \cos\theta\cos\tilde{\theta} + \sin\theta\sin\tilde{\theta}\cos\Delta\omega \right)\mathbf{\hat{z}}\end{split}\]

Which is exactly \(\mathbf{\hat{\tilde{z}}}\).

Crosscheck that the direction of the orbital angular momentum matches, i.e. that

\(\sin\tilde{\theta}\mathbf{\hat{\tilde{x}}} + \cos\tilde{\theta}\mathbf{\hat{\tilde{z}}} = \sin\theta\mathbf{\hat{x}} + \cos\theta\mathbf{\hat{z}}\):

\[\begin{split} \sin\tilde{\theta}\mathbf{\hat{\tilde{x}}} + \cos\tilde{\theta}\mathbf{\hat{\tilde{z}}} &=& \left( \sin\theta\sin^2\tilde{\theta} + \cos\theta\sin\tilde{\theta}\cos\tilde{\theta}\cos\Delta\omega \right)\mathbf{\hat{x}} + \sin\tilde{\theta}\cos\tilde{\theta}\sin\Delta\omega\mathbf{\hat{y}} + \left( \cos\theta\sin^2\tilde{\theta} - \sin\theta\sin\tilde{\theta}\cos\tilde{\theta} \cos\Delta\omega \right)\mathbf{\hat{z}}\\ && + \left( \sin\theta\cos^2\tilde{\theta} - \cos\theta\sin\tilde{\theta}\cos\tilde{\theta}\cos\Delta\omega \right)\mathbf{\hat{x}} - \sin\tilde{\theta}\cos\tilde{\theta}\sin\Delta\omega\mathbf{\hat{y}} + \left( \cos\theta\cos^2\tilde{\theta} + \sin\theta\sin\tilde{\theta}\cos\tilde{\theta} \cos\Delta\omega \right)\mathbf{\hat{z}}\\ &=& \sin\theta\mathbf{\hat{x}} + \cos\theta\mathbf{\hat{z}}\end{split}\]

Finally, crosscheck that the direction of periapsis is consistent, i.e. that

\[ - \sin(\omega-\Delta\omega)\cos\tilde{\theta}\mathbf{\hat{\tilde{x}}} + \cos(\omega-\Delta\omega)\mathbf{\hat{\tilde{y}}} + \sin(\omega-\Delta\omega)\sin\tilde{\theta}\mathbf{\hat{\tilde{z}}} = - \sin\omega\cos\theta\mathbf{\hat{x}} + \cos\omega\mathbf{\hat{y}} + \sin\omega\sin\theta\mathbf{\hat{z}}\]

We will go component by component:

\[\begin{split} \mathbf{\hat{\tilde{p}}}\cdot\mathbf{\hat{x}} &=& -\sin(\omega-\Delta\omega)\cos\tilde{\theta} \left( \sin\theta\sin\tilde{\theta} + \cos\theta\cos\tilde{\theta}\cos\Delta\omega \right)\\ && -\cos(\omega-\Delta\omega)\cos\theta\sin\Delta\omega\\ && +\sin(\omega-\Delta\omega)\sin\tilde{\theta} \left( \sin\theta\cos\tilde{\theta} - \cos\theta\sin\tilde{\theta}\cos\Delta\omega \right)\\ &=& - \cos\theta\cos^2\tilde{\theta}\sin(\omega-\Delta\omega)\cos\Delta\omega - \cos\theta\cos(\omega-\Delta\omega)\sin\Delta\omega - \cos\theta\sin^2\tilde{\theta} \sin(\omega-\Delta\omega)\cos\Delta\omega\\ &=& - \cos\theta\sin(\omega-\Delta\omega)\cos\Delta\omega - \cos\theta\cos(\omega-\Delta\omega)\sin\Delta\omega\\ &=& - \sin\omega\cos\theta\\ &=& \mathbf{\hat{p}}\cdot\mathbf{\hat{x}}\end{split}\]

Next:

\[\begin{split}\mathbf{\hat{\tilde{p}}}\cdot\mathbf{\hat{y}} &=& - \sin(\omega-\Delta\omega)\cos\tilde{\theta} \cos\tilde{\theta}\sin\Delta\omega + \cos(\omega-\Delta\omega)\cos\Delta\omega - \sin(\omega-\Delta\omega)\sin\tilde{\theta} \sin\tilde{\theta}\sin\Delta\omega\\ &=& - \sin(\omega-\Delta\omega)\sin\Delta\omega + \cos(\omega-\Delta\omega)\cos\Delta\omega\\ &=& \cos\omega\\ &=& \mathbf{\hat{p}}\cdot\mathbf{\hat{y}}\end{split}\]

Finally:

\[\begin{split} \mathbf{\hat{\tilde{p}}}\cdot\mathbf{\hat{z}} &=& - \sin(\omega-\Delta\omega)\cos\tilde{\theta} \left( \cos\theta\sin\tilde{\theta} - \sin\theta\cos\tilde{\theta}\cos\Delta\omega \right)\\ && + \cos(\omega-\Delta\omega)\sin\theta\sin\Delta\omega\\ && + \sin(\omega-\Delta\omega)\sin\tilde{\theta} \left( \cos\theta\cos\tilde{\theta} + \sin\theta\sin\tilde{\theta}\cos\Delta\omega \right)\\ &=& + \sin\theta\cos^2\tilde{\theta}\sin(\omega-\Delta\omega)\cos\Delta\omega + \cos(\omega-\Delta\omega)\sin\theta\sin\Delta\omega + \sin\theta\sin^2\tilde{\theta} \sin(\omega-\Delta\omega)\cos\Delta\omega\\ &=& \sin\theta\sin(\omega-\Delta\omega)\cos\Delta\omega + \sin\theta\cos(\omega-\Delta\omega)\sin\Delta\omega\\ &=& \sin\theta\sin\omega\\ &=& \mathbf{\hat{p}}\cdot\mathbf{\hat{z}}\end{split}\]